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Abstract—Over half a million people in the United States
use American Sign Language (ASL) as their primary mode of
communication. Automatic ASL recognition would enable Deaf
and Hard of Hearing (DHH) users to interact with others who
are not familiar with ASL as well as voice-controlled digital
assistants (e.g., Alexa, Siri, etc.). While ASL recognition has
been extensively studied, there is a little attention given to
recognition of ASL non-manual body markers. The non-manual
markers are typically expressed through head, torso and shoulder
movements, and add essential meaning and context to the signed
sentences. In this work, we present ExASL, a sentence-level
ASL recognition system using millimeter-wave radars. ExASL
can recognize manual markers (hand gestures) and non-manual
markers (head and torso movements). It utilizes multi-distance
clustering to recognize body parts and cluster mmWave point
clouds. We then present a multi-view deep learning algorithm
that can learn from clustered body part representation for an
expressive sentence-level recognition. Our evaluation shows that
ExASL can recognize ASL sentences with a word error rate of
0.79%, sentence error rate of 1.25%, and non-manual markers
with an accuracy of 83.5%.

I. INTRODUCTION

About 30 million people in the United States have bilateral
hearing loss, and about 1 million are functionally deaf [1].
Speech production quality is correlated with hearing loss,
which can lead to difficulty in spoken communication. Around
half a million people in the United States communicate visu-
ally through American Sign Language (ASL), and use it as
their primary means of communication. Computer-based ASL
recognition can enable the Deaf and Hard-of-Hearing (DHH)
users to seamlessly interact with others who are unfamiliar
with ASL. It can also enable the DHH users to communicate
with personal or home digital assistant devices (such as “Siri”
on iPhones, “Google Now” on Android smartphones, and
“Alexa” on Amazon Echo smart-speakers) that are primarily
voice-controlled.

ASL recognition has been primarily studied as a form of
gesture recognition problem in previous work. Recognizing
ASL hand gestures using RGB video has been investigated
extensively [2]–[4] in prior research. Recently, researchers
have explored the use of other sensing modalities such as IMU
in wearables [5], depth sensors (Kinect and Leap motion) [6],
and Radio Frequency (RF) based systems [7]. An important

limitation of these existing works is that they only focus on
recognizing manual signs (i.e., the hand gestures) of ASL.
However, signed languages including ASL have structural
complexities that are similar to any other spoken language.
ASL includes both manual signs as well as non-manual mark-
ers. The manual signs typically correspond to words signed
through hand gestures. On the other hand, the non-manual
markers add meaning, context and emphasis to the sentences,
making them critically important components of ASL. These
non-manual markers are expressed through head, torso and
shoulder movement along with facial expressions. For exam-
ple, a signer signing the following three independent manual
signs I, LIKE and APPLES translates to I LIKE APPLES
in English. But if the signer simultaneously shakes her head
(non-manual marker for negation), the translation becomes
I DON’T LIKE APPLES. Body movements like torso shift
add significant expressive power to the language. Signing
for "Fire that" would imply "That is fire.", but
when accompanied with a torso shift towards the addressee
it turns into the question "Is that fire?". Despite their
importance, there exists very little research [8], [9] on recog-
nition of non-manual markers. Additionally, their integration
with manual signs to perform contextual, sentence-level ASL
recognition remains an outstanding problem.

In this work, we present ExASL which can perform manual
as well non-manual marker recognition and can provide an
Expressive, sentence-level ASL recognition. ExASL is based
on millimeter-wave (mmWave) RF signals, a novel and emerg-
ing sensing modality that provides many advantages over
existing sensing modalities. Due to their higher operating
frequency and large available bandwidth, mmWave signals can
provide a very high range resolution for sensing. Compared
to other low frequency RF radars (operating at sub 6 GHz),
mmWave signals provide better accuracy (less clutter) due to
directional communication. Due to these advantages, many
mmWave radars have become commercially available [10],
[11] with applications in automotive and industrial sensing.
mmWave sensing can help in addressing some of the chal-
lenges posed by camera and vision based techniques. Vision
based ASL recognition requires that user is continuously
recorded through an RGB camera, leading to serious privacy
concerns. Also, such solutions perform poorly in dark or978-1-7281-1062-2/20/$31.00 2020 © IEEE



low lighting conditions. With emerging mmWave WLAN
networking standards such as 802.11ad/ay, it is also possible
to utilize the networking devices for the purpose of sensing.
mmWave radars have smaller physical footprint, and can be
easily integrated in today’s IoT devices (such as Amazon Echo
speaker and smartwatch).

mmWave sensing radars estimate range (distance), angle and
velocity of an object through reflection of mmWave signals
from the object. In case of a multi-point scatterer where
multiple points of the object reflect the signal, such estimation
results in a 3-dimensional point cloud. The obtained point
clouds can be tracked over time to identify the spatial changes
of objects surrounding the mmWave radar. In terms of ASL
recognition, the point cloud represents body parts (hands,
torso, etc.) that move over time when the user perform manual
signs and non-manual markers. In this work, we are interested
in using the point cloud representation of mmWave radars
to perform sentence-level ASL recognition. Recognizing ASL
signs and non-manual markers using the obtained point clouds
impose multiple challenges. We list the challenges, our pro-
posed solutions and contributions below.

(1) Body part separation for mmWave point clouds: The
point cloud representation provided by mmWave radar is not
only sparse but also have non-trivial noise due to second order
reflections (produced by reflections from objects other than
user). For a reliable identification of manual and non-manual
markers, it is necessary that the points are associated with
specific body parts after noise removal.

We propose a multi-distant clustering algorithm, which
enables ExASL to separate and identify the human body parts
(Left hand, Right hand, and Torso) from the obtained point
cloud data. The separation of body parts is key to non-
manual marker recognition, as it allows ExASL to model
the underlying parts in isolation, which leads to a reliable
recognition. The body part separation, also enables ExASL to
model the interaction between different parts, which improves
ExASL’s recognition performance. The proposed algorithm
includes outlier removal as a component, making ExASL
resistant to the impact of second order reflections and other
objects in the environment.

(2) Sentence-level ASL recognition: Point cloud data
generated by ExASL is sparse by nature, without much visual
resemblance to the objects (body parts) they represent. The
model that ExASL utilizes for ASL recognition should be able
to capture the body part interactions and accurately recognize
ASL sentences from these sparse representations. Additionally,
a model that can jointly recognize and integrate manual and
non-manual markers is needed for sentence level recognition.

ExASL utilizes a multi-view deep learning algorithm which
explicitly models the interaction between different body parts
in recognizing ASL signs. The proposed algorithm, extends
existing models for point cloud representation with time se-
quence modeling (Long Short-Term Memory (LSTM) units),
enabling ExASL to recognize ASL signs from a sequence of
point cloud data. The presence of hierarchical convolutional
layers enables ExASL to learn feature representations, that

compensate for the sparse point cloud representations. The
algorithm also utilizes Connectionist Temporal Classification
(CTC), which allows ExASL to perform ASL sentence recog-
nition without segmentation or frame level labeling.

We extensively evaluate ExASL’s performance on ASL
recognition with, 23 ASL signs, 29 ASL sentences, and
6 non-manual markers. The evaluation dataset is built on
data collected from 5 participants. By taking advantage of
ExASL’s ability to separate and identify different body parts,
we propose a simple data augmentation technique. We quantify
the significance of the multi-distant clustering algorithm and
multi-view deep learning model by comparing it with a model
which does not take advantage of the body part separation. On
ASL sign recognition the proposed multi-view deep learning
model achieves an accuracy of 92.5% for manual signs (word-
level recognition). For ASL sentence recognition, the model
achieves a Word Error Rate (WER) of 0.79% and Sentence
Error Rate (SER) of 1.25% . We observe that our multi-distant
clustering based body part separation substantially improves
the accuracy, and reduces WER and SER. For non-manual
marker recognition, separation of body parts results in 7%
increase in accuracy (83.5%), in comparison with data without
body part separation.

The remaining paper is organized as follows. In Section II
we give a brief background and system overview, followed
by multi-distant clustering in Section III, multi-view deep
learning in Section IV, and evaluation in Section V. Section VI
provides the related work. Finally, we conclude in Section VII.

II. BACKGROUND AND SYSTEM OVERVIEW

A. mmWave Radars

Radars utilize the radio frequency waves to determine
various spatio-temporal characteristics of an object such as its
distance, angle and velocity. mmWave based radars offer better
range resolution (due to large available bandwidth), less clutter
(high directionality) and high flexibility (can be electronically
steered in different directions). With the demand for mmWave
based radars increasing, several commercial low cost mmWave
based sensors have become commercially available [10], [11].
We now provide a brief primer on how the mmWave radars
use FMCW and generate point cloud output.

1) FMCW Signal Processing: FMCW radars (refer Fig. 2)
operate by modulating the frequency of the carrier wave
linearly within a given range. The signal generated is referred
as a “chirp”. The operating range of the chirp’s bandwidth
(B), slope of the chirp (S) gives the rate of modulation, and
the total time of modulation between start frequency (fc) and
end frequency (fe) gives the chirp duration (Tc).

Range and Range Resolution: When the chirp signal is
reflected from an object, the range (distance) of the object
is given by R = c0∆t

2 where c0 is the speed of light, ∆t
is the time delay of the received signal. The range can also
be represented by the frequency of the IF signal obtained
by calculating an FFT (Range-FFT). With 7 GHz bandwidth
(allowed bandwidth in 60 GHz band by FCC), the range
resolution of a mmWave radar is 2 cm [12].
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Velocity Estimation: FMCW radars send multiple chirp
signals and utilize the phase difference between the received
signals to estimate the velocity of a moving object as v =
λω

4πTc
. Where λ and ω are the wavelength and the phase of

the IF signal, respectively. The phase difference is obtained
by computing another FFT (Doppler-FFT) on the previously
obtained Range-FFT.

Angle of arrival: The presence of multiple antennas on the
receiver is used to estimate the angle of arrival of the received
signal in FMCW radars. The difference in phase (∆φ) between
two antennas is given by 2π∆d

λ where ∆d is the additional
distance traveled because of the distance between the antennas.
Hence, the angle of arrival is given by θ = sin−1(λ∆φ

2πl ) where
l is the distance between the antennas.

2) Point Cloud Estimation: As shown in Fig. 2, the Tx
sends a frame with N chirps. Upon receiving the frames,
the Rx computes the range using Range-FFT and performs
Doppler estimation using Doppler-FFT. A Constant False
Alarm Rate (CFAR) threshold is applied on the output of
Doppler-FFT for object detection. Finally, direction of arrival
is estimated. This results in the azimuth and elevation values,
and combining the angle with the range, we can calculate the
x, y, and z coordinates for each detected object. When ExASL
transmits, the transmitted signals are incident upon multiple
locations of an object (e.g., different body parts). and each
of these reflected signals will be detected as a distinct object
(with x, y, z coordinates). All detected objects together result
in a “point cloud” as shown in Fig. 3.
B. Non-manual markers in ASL

The non-manual markers are expressed through head move-
ments (shake, tilt, nod, etc.), shoulder movements, torso shifts
and even facial expressions [13]. These markers are essential
in terms of automatic sign recognition due to their ability

Right
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Fig. 3: Figure comparing RGB camera data (left), to
ExASL’s point cloud data representation (right).

to change the underlying meaning of a sentence. In the
following, we describe six important non-manual markers that
are considered in this paper.
1) Yes-No questions: These are questions which are answered

with either Yes or No. This non-manual marker is indicated
through shift of the torso towards the addressee [13]. As
an example, the statement "Father became angry"
becomes a question "Did Father become angry?"
when accompanied with the Yes-No marker.

2) Wh questions: These include question sentences with
wh-words such as Where, Who, When, How, etc.
This non-manual marker is expressed through shift of torso
forward towards the addressee along with a head tilt [13].
As an example, the ASL signs "How you" with this
marker becomes the question "How are you?".

3) Negation: Negation is indicated using side-to-side head
shake and frowning. Side-to-side head shake is a com-
mon non-verbal indication to imply “NO” [13]. Negation
changes the meaning of a sentence with its presence. For
example, the signs "Me feel good" followed by nega-
tion in the end means "No, I don’t feel good".

4) Assertion: The assertion marker is expressed through head
nodding. Several types of head nods have been identified
in ASL including rapid slight head nods, fast head nods,
and a larger, deeper, slower head movement [14]. The ASL
signs "Me worried" with a head nod would translate to
"I am definitely worried".

5) Verb inflection: In ASL, same verb can take different
meanings when the sign is made with spatio/temporal
variations. For example, the sign for verb want is to pull
the left and right hands towards torso with a grabbing
gesture. The same sign when performed with a torso shift



away from the addressee means really wish.
6) Spatial agreement: Spatial agreements are used to iden-

tify multiple subjects or objects when a single sen-
tence has more than one subject or object. In the sen-
tence "My father has two brothers and one
sister", the sign for two is performed with a torso shift
towards the left and sign for one is performed with a torso
shift towards the right.

C. System Overview
Figure 1 shows the overview of ExASL, which is com-

prised of three components, mmWave radar for point cloud
estimation, multi-distant clustering for body part separation,
and multi-view deep learning for ASL sentence recognition.

a) mmWave radar point cloud generation: ExASL uti-
lizes COTS radar from Texas Instruments [10]. The radar has
3 Tx antennas and 4 Rx antennas, with 4 GHz (76 to 81
GHz) continuous bandwidth. The Tx antenna configuration
enables the radar to detect range in 3D (x,y, and z axis range
values). The 3 dB beamwidth in the azimuth plane and the
elevation plane are ±28° and ±14° respectively. The signals
received by the radar is processed on board through the point
cloud estimation pipeline discussed in Section II-A1. We use
a sliding window (window size of 150ms and time step of
50ms) to buffer and output a continuous stream of frames.

b) Multi-distant clustering: The generated point cloud
data is input to the multi-distant clustering algorithm, which
separates and associates different point clouds to three con-
sidered body parts (Left hand, Right hand, and Torso). The
algorithm utilizes a body part support set built using Kinect,
which is comprised of primitive motions (collected only once
offline), that model the probable locations for different body
parts (when ASL signs are performed). The algorithm starts
by clustering the obtained point cloud data. For each resulting
cluster (with outliers removed), cluster validity and part sup-
port are computed in the next step. Cluster validity is computed
by establishing cluster similarity with other clusters. Finally,
the cluster validity and part support are used in the association
of the point clouds to their corresponding body parts.

c) Multi-view deep learning: The multi-view deep learn-
ing algorithm is comprised of two components, one for ASL
manual marker recognition and the other for ASL non-manual
marker recognition. The manual marker recognition takes the
body part separated data as input and creates 3 views (xy,
yz, and xz axes of 3D euclidean space) for each body part.
Convolutional Neural Networks (CNN) are used for learning
feature representations from the created views, and Long
Short-term Memory (LSTM) units are used for modeling the
signs over time. The non-manual marker recognition, operates
in a similar fashion with just the torso body part views. ExASL
combines the output of the two components in recognizing the
signed ASL sentence (Figure 1).

III. BODY PART SEPARATION USING MULTI-DISTANT
CLUSTERING

The raw point cloud data generated by our mmWave radar
(after pre-processing) for a single frame is shown in Figure 4a.

As we can observe, the data provides little indication on which
point cloud corresponds to which body part. Also, as pointed
in the figure, the data contains second order reflections. These
reflections are inherent to RF systems and they are introduced
when the signals reflecting of an object goes through another
reflection (from a wall or another object). Hence, before we
pass the data to the deep learning models for recognizing ASL
sentences, we have two challenges to address: (i) separate
and associate different point clouds to the body parts, and
(ii) remove the second order reflections. To address these
challenges we develop a multi-distant clustering algorithm
which performs clustering with multiple distances and uses
the support of pre-collected Kinect templates, to associate the
obtained clusters to their corresponding body parts.

A. Primitive Motions for Body Part Association

In order to associate point clouds to body parts, we calculate
the likelihood of each point belonging to a specific body part
cluster. This likelihood can be based on distance from the point
clouds to the “probable” locations of different body parts. The
obtained distance can be strongly correlated to the likelihood
of association (i.e., lower the distance, higher the likelihood
of association). The probable locations can be estimated based
on the fact that when a user performs ASL signs, there are
a few distinct locations within which the hands can move
(termed as major and minor locations of ASL signs). This is
because most ASL signs are some combinations of primitive
hand movements (such as push, pull, hands up, etc.). Based
on this, we identify a 6 primitive motions: (i) extending both
hands forward, (ii) extending both hands vertically up, (iii)
extending both hands to the left, (iv) extending both hands to
the right, (v) extending left hand to left and right to the right
simultaneously, and (vi) lift both the hands from bottom to
face. These primitive motions once modeled, can be used as
points of reference for body part locations during ASL signing.
These reference points can be compared to the obtained point
clouds in determining there association to a body part.

We use Kinect to create the templates for the primitive
motions. The templates are essentially the locations of the
body parts as a user performs the primitive motions. There are
various advantages of using Kinect for this purpose. Kinect can
provide an accurate estimate of the body part locations with
less noise. In addition, the data provided from Kinect is the 3D
coordinate (x, y, and z) of each joint, matching the point cloud
data representation. This enables a direct comparison between
the point cloud data and Kinect data. Kinect provides values
for 24 joint locations, of which we use the joint locations of
left hand, left wrist and left hand tip (the tip of index finger)
to model the probable locations of left hand. Joint locations of
right hand, right wrist and right hand tip are used to model the
probable locations of right hand and joint locations of head,
spine and neck are used to model the probable locations for
the torso. Fig. 4d shows a snapshot of the primitive motion
extending both the hands vertically up for Kinect. We note that
this collection of primitive motion is done only once using a
single user. Once collected these primitive motions are used
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as a template in the proposed algorithm for determining point
cloud association.
B. Algorithm for Point Cloud Association

Algorithm 1 Multi-distant clustering

Input: i) Point cloud data X generated by ExASL at time ti.
ii) list of distances D iii) Threshold γ to determine cluster
overlap iv) Threshold ∆ to determine cluster validation v)
Set of primitive motions Pm vi) List of body parts B
Output: Body part clusters (BPC) for the three body parts
Procedure: clusters← getClusters(X,D)

. Compute V and PS for each cluster
for d ∈ D do

C← clusters of distance d
C’← clusters with distance other than d
for c ∈ C , c′ ∈ C ′ do

if getClusterOverlap(c,c’) ≤ γ then
V← V + 1

end if
end for
for b ∈ B , p ∈ Pm do

PS[b]← getPartSupport(b,p)
end for

end for
. Utilize V and PS to determine body part association

for c ∈ clusters do
if V for c > ∆ then

bodyPart←Min({PS[b] ∀b ∈ B})
if BPC[bodyPart] = ∅ then

BPC[bodyPart]← c
else

P ← getNonOverlapping(c,BPC[bodyPart]
BPS[bodyPart]+=P

end if
end if

end for

Algorithm 1 gives the pseudo code for the proposed multi-
distant clustering algorithm. The algorithm operates in two
phases, for each frame, first it computes clusters using DB-
SCAN clustering algorithm for a list of possible distances (we
choose ε values between 0.075 and 0.2), and calculates the

validity (V) and part support (PS) for the obtained clusters.
We use multiple distances as different distance values result
in different set of clusters each having some advantage over the
other (depicted in Fig. 4b). In the second phase, the computed
validity and part support values are used to associate the
points to different body parts. We define validity (V) of a
cluster as the number of clusters that are similar to the cluster
for which validity is calculated. Similarity is defined by the
overlap between the clusters. We define the overlap for cluster
c1 with respect to cluster c2 as

Overlap(c1, c2) =
| { c | ∀c ∈ c1 ∃c′ ∈ c2 ∧ Dist(c,c′) < β} |

| c1 |
(1)

where here c1 and c2 are set of points, Dist represents the
distance and β = 0.00001. Let Pm be the set of primitive
motions, d be the cluster centroid of the cluster c1, then the
part support (PS) for the cluster c1 with respect to body part
b is defined as

PS[b] =
∑
p∈Pm

getNearestDistance(p, d, b,N) (2)

where N defines the number of nearest points to the cluster
centroid which we set as 30 based on empirical observations.
Once we obtain the validity and part support for all clusters,
we associate the points to different body parts in the next
phase. We only choose a cluster if it has a validity greater
than ∆ (where ∆ = 2), and the body part associated with
the cluster is the one with the minimum part support. If the
corresponding body part already has points in it, we add the
non-overlapping points from the current cluster c1 with the
existing points for that body part. We define the set of non-
overlapping points P in c1 with respect to c2 as P = { point |
point ∈ c1 ∧ point /∈ S} where S is the bounding sphere that
encloses all the points in c2. We compute the sphere using
Ritter’s bounding sphere algorithm. Figure 4c shows the output
of multi-distant clustering on a single frame when a user is
performing an ASL sign (Figure 4a). In Figure 4a, the second
order reflections are visible, while in Figure 4c, the second
order reflections have been removed and each body has been
distinctly identified. Compared to Fig. 4b which uses a fixed
distance to clustering, multi-distant clustering performs much
better in correctly separating body parts. As we show in the
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evaluation section, body part separation through multi-distant
clustering is effective in improving the ASL sentence and sign
recognition.

IV. MULTI-VIEW DEEP LEARNING

With the separation of body parts, ExASL produces a 3D
point cloud representation of the three body parts: left hand,
right hand, and torso. When the user performs a gesture,
a sequence of point cloud frames are generated. Given this
sequence of frames, ExASL has to recognize the corresponding
ASL manual signs as well as the non-manual markers. Signing
of an ASL sentence involves variation of the separated body
parts over time, and the ability track these variations is key
to accurate recognition. Also, the point cloud data generated
by ExASL is sparse in nature (refer Fig. 4c), where a visual
recognition of the underlying body part is difficult.

To address these challenges, we employ a multi-view CNN
model and extend it with Bidirectional Long Short-Term Mem-
ory (LSTM) units to model the body part interactions over time
from sparse point cloud representations. In Multi-view CNNs,
multiple views of the 3D point cloud data are generated, with
each view being a 2D snapshot of the point cloud data from a
particular view point (e.g., xy axis). LSTM’s possess multiple
gates (termed as input, output, forget and update gates) along
with a cell state to keep track of information from the previous
time steps and to gather information (required) from the input
at current time step. Because of their power to capture long
term and short term dependencies over time, LSTM’s have
become the state of the art models for time sequence modeling.
Bidirectional LSTM is a variant of the LSTM which processes
the input in two directions, one from start to end (from time
t0 to tn) and another from end to start (from time tn to t0).

A. Multi-view Deep Learning Models

ExASL utilizes 3 views (xy, yz, and xz) to represent the
point cloud data. We propose three different models, each take
the images of these 3 views to recognize the ASL sentence.
1) Clustered Multi-view (Clust-MV): At each time step

(shown in Fig. 5a), this model takes 9 images as input
where each image represents a view of a body part (3 body
parts × 3 views = 9 Images). The model utilizes separte 2D
CNNs for each view for learning feature representations.
The learned features for each body part is separated and
modeled over time using separate bidirectional LSTMs.

The output of these LSTMs are then concatenated and
passed through another bidirectional LSTM to model the
interaction between the parts. This is followed by dense
and softmax layers for prediction.

2) Clustered Multi-view Swapped (Clust-MV-SWP): The
model improves over the previous model Clust-MV with
a simple data augmentation technique. For every input data
sample, it takes another copy of the sample with right and
left hands swapped, along with the original sample. The
intuition behind the swapping is based on the symmetry
in the human skeletal structure. This data augmentation
doubles the training sample size and also leads to better
performance (as quantified in evaluation section).

3) Unclustered Multi-view (Unclust-MV): Fig. 5b shows
the model for multiple time steps. The model takes 3
images at every time step, which are the three views of the
unprocessed point cloud. Similar to Clust-MV, it uses
separate 2D CNNs for learning feature representation of
each view. The learned features are concatenated and input
to a bidirectional LSTM for modeling the time variations.
Finally, the output of the bidirectional LSTMs are passed
through dense and softmax layers for prediction.

For all the discussed models, each convolutional layer is made
of convolutional kernels of size 5 × 5, followed by max
pooling layer (for down-sampling) with kernel size 2× 2 and
rectified linear units (for non-linearity). View specific CNNs
are employed with 4 such convolutional layers, each with
16, 32, 64, and 128 filters respectively. All the bidirectional
LSTMs contain two layers of LSTM cells each with 2048
hidden units. The dense layer consists of three linear layers
each with 2048, 1024, and 512 hidden units, respectively. All
the linear layers use rectified linear units for activation. A
dropout layer is present between the last two linear layers with
a drop out rate of 0.65 for regularization. The same models
are used for both word level and sentence level classification.

B. Sentence and Non-manual Marker Recognition

The network output at each time step is used to compute the
Connectionist Temporal Classification (CTC) loss [15] with
respect to the target sequence (i.e., sentence). CTC loss is
used for training the network. CTC enables direct modeling
of the alignment between the input sequence (frames) and
target sequence (sentences) without the need for segmentation
or frame level labeling. To use CTC, "blank" is added as



a class to the existing classes. The reason for this is shown
in Figure 5c. Here, the model is trying to align a sequence of
6 frames to a sentence of two words "I Sad". As pointed
out earlier, CTC predicts on every frame, but there could be
frames which need not be part of any label (first and last frame
in Figure 5c). CTC overcomes this issue, by introducing the
blank class to the set of classes. After generating per frame
label, a decoding algorithm is used to get the actual labels
from the given sequence. Algorithms such as the best path and
beam search are commonly used decoding algorithms. ExASL
utilizes the best path algorithm, which given a sequence of
outputs as seen in Figure 5c will remove the blanks and replace
the multiple continuous occurrence of a class with a single
occurrence. So, the final output for the example would be "I
sad", meaning "I am sad".

Since the non-manual markers are recognized through head
and torso movements (jointly referred as torso herein), only
Unclust-MV model is used, both for the unprocessed data
as well as the body part separated data. In the former case, the
input is the 3 unprocessed views. For the body part separated
data, the 3 views corresponding to the torso body part are
input to the model. A None class is included to label the
sentences without any non-manual markers. Figure 5c shows
the non-manual marker recognition process. For the same
set of frames, the model takes only the torso body part as
input and predicts Negation as the non-manual marker.
Combining this with the prediction of sentence recognition
model would change the meaning to "I am not sad".
Lastly, we also develop a model for performing only word-
level recognition for comparison in evaluation. For the word
level, the output from the final time step (for all the models)
is used for prediction.

V. EVALUATION

A. Dataset Collection and Implementation

1) Participants and ASL Data Collection: We pick 29 ASL
sentences for evaluation, of which 16 sentences have non-
manual markers and 13 do not have non-manual marker. Of
the 13 sentences without non-manual markers, 9 of them
have counterparts with non-manual marker. For example, the
sentence "Fire that" with a torso forward shift (Yes/No-
question) indicates the question "Is that fire?". The
counter part of this sentence without the torso forward shift,
is the statement "That is fire." is also included as part
of the dataset. Without these counterparts, the deep learning
model could learn the difference in sentences to label the
non-manual markers, instead of learning the underlying non-
manual markers (torso/head movements). Table I gives the list
of the 23 words and 6 non-manual markers for the chosen
sentences. We include the class blank to the set of words for
performing sentence level recognition using CTC as explained
in Section IV-B. None is used as the label for sentences
without non-manual markers, both while training and testing
for non-manual marker recognition.

For evaluating the performance of ExASL in sentence level
ASL recognition, we collect samples from 5 participants (IRB

Words

I, Want, Piano, Wake up, Me, Weather,
Teach, Angry, Worried, Never, That, Mine,
Books, One, How, Two, They, Visiting,
Students, You, Fire, Time, and, There.

Non-manual
markers

Wh/Yes or No-question (Torso forward shift),
Verb inflection (Torso backward shift),
Spatial agreement (Torso side shift) ,
Assertion (Head nod ),
Negation (Head shake), and None.

Word level
data

4 Participants, 23 words, 10 instances
4 x 23 x 10 = 920 Samples

Sentence Level
data

5 Participants, 29 sentences, 20 instances
5 x 29 x 20 = 2900 Samples

TABLE I: List of words, non-manual markers, and data
collected for word , sentence, and non-manual marker

recognition evaluation of ExASL.

approved). For each participant, we collect 20 instances per
sentence resulting in 2900 samples in total. We also collect
samples on the list of words (refer Table I), to evaluate the
performance of ExASL in isolated ASL sign (word level)
recognition. As the major focus is to showcase the perfor-
mance of ExASL in adding context to the ASL sentences with
non-manual markers, we only collect 10 instances per word
from 4 participants. The data was collected with the participant
seated in front of the sensor (for both words and sentences).
While the words were 2 to 3 seconds long, sentences were 5 to
7 seconds long, and the total collection time for all participants
was between two to three weeks. We recruited participants for
the study with varying experience in ASL usage (beginner to
advanced).

2) Implementation: The data collected is processed for
body part separation and the required views are created on a
separate Linux desktop (offline), before being input to deep
learning algorithms for training/testing. We implement the
deep learning models on computing clusters with NVIDIA
Tesla K480 GPU’s. The models were implemented using
Pytorch. We use 80% of data for training and the remaining
20% data for testing. The word level models took approxi-
mately 14 hours to train, while the sentence level models took
approximately 2 days to train.

3) Evaluation metrics: We use accuracy as the metric
of evaluation for word recognition and non-manual marker
recognition. For sentence recognition, we use Word Error
Rate (WER) and Sentence Error Rate (SER) as the metrics
of evalution. WER is a standard metric used in automatic
speech recognition systems, and machine translations. WER is
defined in comparison between the target sequence (sentence
– sequence of words in our case) and the predicted sequence
as WER = S+D+I

N where S is the number of substitutions,
D is the number of deletions, I is the number of insertions
and N is the number of words in the target sequence. WER
(derived from Levenshtein distance), accounts for the number
of substitutions, insertions, and deletions required in the target
sequence to recover the predicted sequence. For example, if
the target sequence (ground truth) is "I want apple" and
the predicted sequence is "I apple", then one deletion
is required in the target sequence to recover the predicted
sequence. Thus, the WER would be 1

3 = 33.33%, with 1
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Fig. 6: Confusion matrix for word level recognition using
Clust-MV-SWP

deletion (D) and 3 words (N ) in the target sequence. When
computed for a collection of sentences, WER is calculated as
the ratio of total number required insertions, deletions, and
substitutions to the total number of words in all the sentences.
SER is defined as the ratio between the number of incorrect
sentence predictions, to the total number of predictions.

B. Numerical Results

1) Word level: For evaluating the word level recognition of
ExASL, we compare the proposed multi-view deep learning
models (refer Section IV-A) by training with 80% of user
data and testing with remaining 20%. From the results

Model Accuracy
Unclust-MV 89.5%
Clust-MV 91.4%

Clust-MV-SWP 92.5%

TABLE II: World level recognition accuracy
shown in Table II, it is evident that, all the three models
offer comparable performance. Clust-MV-SWP model per-
forms the best with a 3% increase in accuracy, compared to
Unclust-MV model. Figure 6 shows the confusion matrix for
Clust-MV-SWP model. We observe that, a common source
of confusion is between the words that involve similar motion.
For example, You involves moving a single hand towards the
addressee, while How involves moving both the hands jointly
towards the addressee with a minor downward movement in
the end. Because of the sparse nature of the obtained point
cloud, the difference between moving the hands jointly (for
How)) and moving a single hand (for You) is not substantial.

2) Sentence Level: We evaluate ExASL’s performance in
sentence level recognition, in a set up similar to word level
evaluation (80% train and 20% test) with the 3 multi-view deep
learning models. Figure 7 shows the performance of the three
models. Clust-MV-SWP offers the lowest WER (Figure 7a)
of 0.79% which is 1.6% lower than Unclust-MV model.
Even without data augmentation, Clust-MV results in 1.37%
decrease in WER which shows the significance of multi-
distant clustering and explicit modeling of body part interac-
tions. When evaluated on SER (Figure 7b), Clust-MV-SWP

reduces the error rate by 2.23% (1.25%), compared to the
Unclust-MV (3.48%) model which does not take advantage
of the body part separation.
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Fig. 7: Results for ASL sentence recognition (a) Word Error
Rate (WER) and (b) Sentence Error Rate (SER) for the three

Multi-view deep learning models
a) Cross subject evaluation: We train the models with

4 participants data, and test on the remaining one partic-
ipant, to evaluate ExASL’s ability to adapt to new users.
The resulting WER’s are 33.68%, 28.35%, and 24.11% for
Unclust-MV, Clust-MV , and Clust-MV-SWP respec-
tively. For SER, the results are 46.15%, 42.24%, and 39.14%
for Unclust-MV, Clust-MV , and Clust-MV-SWP re-
spectively. Clust-MV-SWP model taking advantage of the
body part separation, achieves 9.57% and 7.01% decrease in
WER and SER respectively. While the results reestablish the
significance of the proposed models, we see an increase in
WER and SER in cross subject evaluation in comparison to
training and testing on same participants. We believe the prob-
lem to be the lack of participant diversity in our current dataset.
As statistical learning (based on which deep learning models
are built) is heavily based on data availability, adding data from
more participants (leading to more diversity) can alleviate this
problem. We also observe that, words that were confused in
word level recognition (because of similar movement), are also
confused during sentence level recognition.

Model Accuracy
Unclust-MV

(Trained and tested on data
without body part separation)

76.5%

Unclust-MV
(Trained and tested on

Torso body part data alone)
83.5%

TABLE III: Non-manual recognition accuracy with and
without body part separation

3) Non-manual markers: Table III shows the results for
non-manual marker recognition when trained on 80% par-
ticipant data and tested on remaining data. As explained in
Section IV-B, we only use Unclust-MV model for non-
manual marker recognition, as the only body part required for
training is the torso. Unclust-MV performs better when input
with just the torso data (obtained with multi-distant clustering),
compared to input without body part separation. There is a
7% increase in accuracy in the former case. Figure 8 shows
the confusion matrix for non-manual marker recognition. The
major confusion happens between Assertion (Head nod),
Negation (Head shake) and None. Compared to torso,
head has smaller cross section, resulting in even sparser point
clouds. This makes it more difficult for ExASL to differentiate
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C1- Wh/ Yes or No question, C2-Verb inflection, 
C3- Spatial agreement, C4- Assertion, C5-Negation, C6-None

Fig. 8: Confusion matrix for non-manual markers using
Unclust-MV with torso body part data

between these non-manual markers and None (participant not
performing any non-manual marker). Even in the absence of
non-manual marker, there is some head movement when a
participant does any ASL sentence, adding to the confusion.

VI. RELATED WORK

Initial works that utilized RGB camera based systems for
ASL recognition where based on Hidden Markov Models
(HMM) [2], [3] with hand crafted features. With the advent
of Deep learning algorithms, recent works have adopted them
for ASL recognition from continous videos. In [4] authors
propose a hierarchical attention network with latent space, to
do continuous sign language recognition without segmenta-
tion. A new optimization technique, that combines Dynamic
Time Warping (DTW) alignment constraint with maximum
likelihood constraint was proposed in [16], for ASL recog-
nition from videos. In contrast to ASL manual-marker (hand
signs) recognition, non-manual marker recognition, which is
the focus of our work, has received little attention. In [8],
authors propose a framework for face tracking and position
estimation, which they use in classifying two non-manual
markers (Wh-question and negation). In [9], authors utilize a
2-level Conditional Random Fields (CRF) to track the eyebrow
and head gestures over time, to recognize five non-manual
markers. Authors in [17] propose a adaptive face tracking
methodology to recognize facial expression from continuous
video, which they use for non-manual marker recognition.
Unlike the existing works that focus on eye brow and head
gesture non-manual markers, our work studies non-manual
markers that involve movements in torso and head.

Because of the direct availability of human joint data, Kinect
and Leap Motion (infrared based) has been extensively studied
for ASL sign recognition [6], [18]. Wearable IMUs [5] have
also been used for ASL sign recognition. In [7] authors have
utilized WiFi channel state information (CSI) for ASL sign
recognition. While Kinect has the same limitations as camera
based systems, wearables require on body presence, while
ExASL offers a device free solution. No existing work in
other modalities have studied non-manual marker recognition
in ASL, which is the focus of our work. The presence of higher
bandwidth and directional antennas has led to the recent wave
of mmWave sensing. In [19], authors exploit the directional

nature of mmWave systems for human identification and
human vital sign monitoring. Authors in [12] propose a new
system for short range gesture recognition using mmWave.
Compared to [12], our focus is on ASL hand and body gesture
recognition at larger distances where body part separation is
necessary for accurate recognition.

VII. CONCLUSION

In this work, we presented a 60GHz mmWave based ASL
recognition system, for ASL sentence recognition with manual
and non-manual markers. We proposed a multidistant clus-
tering algorithm, which utilized Kinect primitives to separate
different body parts from the generated point cloud data. We
developed a multi-view deep learning algorithm, that took
advantage of the separated body parts in both manual and non-
manual marker recognition. We extensively evaluated ExASL’s
performance in sentence-level ASL recognition.
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